
DSP Based Electrical Lab

Gokaraju Rangaraju Institute of Engineering & Technology
(Autonomous)

Department of Electrical & Electronics Engineering

DSP Based Electrical Lab
IV Year - I Semester

by

Vinay Kumar A

Associate Professor

DEPARTMENT OF ELECTRICAL & ELECTORNICS ENGINEERING

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING & TECHNOLOGY

Nizampet Road, Bachupally, Kukatpally, Hyderabad-500090

Telangana, India. +91-040- 65864440, 65864441, www.griet.ac.in

GOKARAJU RANGARAJU INSTITUTE OF

ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

 DEPARTMENT OF

 ELECTRICAL & ELECTORNICS ENGINEERING

CERTIFICATE

This is to certify that this book is a bonafide record of

practical work done in the DSP based Electrical Lab in

…............semester of …...........year during the academic year.........

Name :

Roll No : …..................................

Date : …...................................

Internal Examiner External Examiner

INDEX

Prog.

No
Date Title of the Program Marks Signature

1.
Blinking on-board LED

2.
Watchdog with CPU Timer interrupts

3.
Implementing for Loop

4. Factorial of a number using for Loop

5.
Generation of a Square wave

6.
Generation of Triangular wave

7.

Generation of Sine wave

8.
Acquisition of signal from ADC

9. Initializing the Event Manager

10.
Generation of 1 kHz PWM Pulses at 50% and 75%

Duty cycles

11.
Generation of 5 kHz PWM Pulses at 25% Duty cycle

12.
Generation of simple PWM pulses at 10KHz

13.

Generation of ePWM pulses with a dead-band (delay

routine)

14.
An example to run a program in FLASH memory

15.
Interfacing an external LED

16.
Generation of SVPWM pulses for an Inverter

operation

DSP based electrical lab

P a g e | 1

Department of Electrical & Electronics Engineering, GRIET-HYD.

Introduction:

A digital signal processor (DSP) is an integrated circuit designed for high-speed

data manipulations, and is used in audio, communications, image manipulation, and

other data-acquisition and data-control applications. The microprocessors used in

personal computers are optimized for tasks involving data movement and inequality

testing. The typical applications requiring such capabilities are word processing,

database management, spread sheets, etc. When it comes to mathematical

computations, the traditional microprocessor is deficient particularly where real-time

performance is required. Digital signal processors are microprocessors optimized for

basic mathematical calculations such as additions and multiplications.

A DSP system can be defined as an electronic system which can make use of

digital signaling processing. Further which is the application of the mathematical

operations to represent signals digitally. These signals are represented digitally as

sequences of samples. Often, these samples are obtained from physical signals through

the ADC and digital signals can be converted back to physical signals through DAC.

Digital signal processing enjoys several advantages over analog signal processing. The

most significant of these is that DSP systems can accomplish tasks inexpensively that

would be difficult or even impossible using analog electronics. Examples of such

applications include speech synthesis, speech recognition , and high-speed modems

involving error-correction coding. These tasks involve a combination of signal processing

and control (e.g., making decisions regarding received bits or received speech) that is

extremely difficult to implement using analog techniques.

When we look for the applications DSP processors in electrical engineering, there

are many environments where they can be used in controlling circuits such as in

Inverter, controlled rectifier, protection systems, reactive power comp ensation systems

like DVR, controlling speeds of motors like BLDC etc.

DSP based electrical lab

P a g e | 2

Department of Electrical & Electronics Engineering, GRIET-HYD.

Types of DSP:

 Digital signal processing can be separated into two categories - fixed point

and floating point. These designations refer to the format used to store and manipulate

numeric representations of data. Fixed-point DSPs are designed to represent and

manipulate integers – positive and negative whole numbers – via a minimum of 16 bits,

yielding up to 65,536 possible bit patterns (216). Floating-point DSPs represent and

manipulate rational numbers via a minimum of 32 bits in a manner like scientific

notation, where a number is represented with a mantissa and an exponent (e.g., A x 2B,

where 'A' is the mantissa and ‘B’ is the exponent), yielding up to 4,294,967,296 possible

bit patterns (232).

The term ‘fixed point’ refers to the corresponding way numbers are represented,

with a fixed number of digits after, and sometimes before, the decimal point. With

floating-point representation, the placement of the decimal point can ‘float’ relative to

the significant digits of the number. For example, a fixed -point representation with a

uniform decimal point placement convention can represent the numbers 123.45,

1234.56, 12345.67, etc, whereas a floating-point representation could in addition

represent 1.234567, 123456.7, 0.00001234567, 1234567000000000, etc. As such,

floating point can support a much wider range of values than fixed point, with the ability

to represent very small numbers and very large numbers.

With fixed-point notation, the gaps between adjacent numbers always equal a

value of one, whereas in floating-point notation, gaps between adjacent numbers are

not uniformly spaced – the gap between any two numbers is approximately ten million

times smaller than the value of the numbers (ANSI/IEEE Std. 754 standard format), with

large gaps between large numbers and small gaps between small numbers.

Programing Language:

DSPs are programmed in the same languages as other scientific and engineering

applications, usually assembly or C. Programs written in assembly can execute faster,

while programs written in C are easier to develop and maintain. In traditional

applications, such as programs run on personal computers and mainframes, C is almost

always the first choice. If assembly is used at all, it is restricted to short subroutines that

must run with the utmost speed.

DSP based electrical lab

P a g e | 3

Department of Electrical & Electronics Engineering, GRIET-HYD.

However, DSP programs are different from traditional software tasks in two

important respects. First, the programs are usually much shorter, say, one -hundred lines

versus ten-thousand lines. Second, the execution speed is often a critical part of the

application. This is the reason why many uses a DSP in the first place, for its blinding

speed. These two factors motivate many software engineers to switch from C to

assembly for programming Digital Signal Processors.

Architecture Overview:

TI Texas Instruments TMS320

 Texas Instruments TMS320 is a blanket name for a series of digital signal

processors (DSPs) from Texas Instruments. It was introduced on April 8, 1983 through

the TMS32010 processor, which was then the fastest DSP on the market. The processor

is available in many different variants, some with fixed-point arithmetic and some

with floating point arithmetic. The floating point DSP TMS320C3x, which

exploits delayed branch logic, has as many as three delay slots. The flexibility of this line

of processors has led to it being used not merely as a co -processor for digital signal

processing but also as a main CPU.

Newer implementations support standard IEEE JTAG control for boundary scan

and/or in-circuit debugging. The original TMS32010 and its subsequent variants is an

example of a CPU with a modified Harvard architecture, which features separate

address spaces for instruction and data memory but the ability to read data values from

instruction memory. The TMS32010 featured a fast multiply-and-accumulate useful in

both DSP applications as well as transformations used in computer graphics.

Outline of TMS320 series

 TMS320C1x, the first generation 16-bit fixed-point DSPs. All processors in these

series are code-compatible with the TMS32010.

o TMS32010, the very first processor in the first series introduced in 1983,

using external memory.

o TMS320M10, the same processor but with an internal ROM of 3 KB

o TMS320C10, TMS320C15 etc.

https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Texas_Instruments
https://en.wikipedia.org/wiki/Fixed-point_arithmetic
https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Delayed_branch_logic
https://en.wikipedia.org/wiki/Branch_delay_slot
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/JTAG
https://en.wikipedia.org/wiki/Modified_Harvard_architecture
https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate
https://en.wikipedia.org/wiki/Fixed-point_arithmetic
https://en.wikipedia.org/wiki/Read_only_memory

DSP based electrical lab

P a g e | 4

Department of Electrical & Electronics Engineering, GRIET-HYD.

 TMS320C3x, floating point

o TMS320VC33

 TMS320C4x, floating point

 TMS320C8x, multiprocessor chip.

o TMS320C80 MVP (multimedia video processor) has a 32-bit floating-point

"master processor" and four 32-bit fixed-point "parallel processors". In

many ways, the Cell microprocessor followed this design approach.

C2000 series

C2000 microcontroller family consists of 32-bit microcontrollers with

performance integrated peripherals designed for real-time control applications. C2000

consists of 5 sub-families: the newer C28x + ARM Cortex M3 series, C28x Delfino

floating-point series, C28x Piccolo series, C28x fixed-point series, and C240x, an older

16-bit line that is no longer recommended for new development. The C2000 series is

notable for its high performance set of on-chip control peripherals

including PWM, ADC, quadrature encoder modules, and capture modules. The series

also contains support for I²C, SPI, serial (SCI), CAN, watchdog, McBSP, external memory

interface and GPIO. Due to features like PWM waveform synchronization with the ADC

unit, the C2000 line is well suited to many real-time control applications. The C2000

family is used for applications like motor drive and control, industrial automation, solar

and other renewable energy, server farms, digital power, power line communications,

and lighting. A line of low cost kits is available for key applications including motor

control, digital power, solar, and LED lighting.

C5000 Series

 TMS320C54x 16-bit fixed-point DSP, 6 stage pipeline with in-order-execution of
opcodes, parallel load/store on arithmetic operations, multiply accumulate and
other DSP enhancements. Internal multi-port memory. no cache unit.

 A popular choice for 2G Software defined cellphone radios, particularly GSM,
circa late 1990s when many Nokia and Ericsson cellphones made use of the C54x.

 At the time, desire to improve the user interface of cellphones led to the
adoption of ARM7 as a general-purpose processor for user interface and control,

https://en.wikipedia.org/wiki/Cell_microprocessor
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Quadrature_encoder
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/CAN_bus
https://en.wikipedia.org/wiki/Watchdog_timer
https://en.wikipedia.org/w/index.php?title=McBSP&action=edit&redlink=1

DSP based electrical lab

P a g e | 5

Department of Electrical & Electronics Engineering, GRIET-HYD.

off-loading this function from the DSP. This ultimately led to the creation of a
dual core ARM7+C54x DSP, which later evolved into the OMAP product line.

 TMS320C55x generation - fixed-point, runs C54x code but adds more internal
parallelism (another ALU, dual MAC, more memory bandwidth) and registers,
while supporting much lower power operation.

 Today, most C55x DSPs are sold as discrete chips

 OMAP1 chips combine an ARM9 (ARMv5TEJ) with a C55x series DSP.

 OMAP2420 chips combine an ARM11 (ARMv6) with a C55x series DSP.

C6000 Series

 TMS320 C6000 series, or TMS320C6x: VLIW-based DSPs

 TMS320C62x fixed-point - 2000 MIPS/1.9 W

 TMS320C67x floating point - code compatible with TMS320C62x

 TMS320C64x fixed-point - code compatible with TMS320C62x

 TMS320C67x+ floating point - architectural update of TMS320C67x

 TMS320C64x+ fixed-point - major architectural update of TMS320C64x

 TMS320C674x fixed- and floating point - merger of C64x+ and C67x+

 TMS320C66x fixed- and floating point - backwards compatible with C674x

 Other parts with C6000 series DSPs include

 DaVinci chips include one or both of an ARM9 and a C64x+ or C674x DSP

 OMAP-L13x chips include an ARM9 (ARMv5TEJ) and a C674x fixed and floating

point DSP

 OMAP243x chips combine an ARM11 (ARMv6) with a C64x series DSP

 OMAP3 chips include an ARM Cortex-A8 (ARMv7) with a C64x+ DSP

 OMAP4 and OMAP5 chips include an ARM Cortex-A9 or A15 (ARMv7) with a

custom C64x+ derivative known as Tesla (or C64T)

https://en.wikipedia.org/wiki/OMAP
https://en.wikipedia.org/wiki/ARM9
https://en.wikipedia.org/wiki/OMAP
https://en.wikipedia.org/wiki/ARM11

DSP based electrical lab

P a g e | 6

Department of Electrical & Electronics Engineering, GRIET-HYD.

What is the TMS320C28x?

The TMS320C28x is a 32-bit fixed point DSP that specializes in high performance

control applications such as, robotics, industrial automation, mass storage devices,

lighting, optical networking, power supplies, and other control applications needing a

single processor to solve a high-performance application.

The C28x architecture can be divided into 3 functional blocks:

• CPU and busing

• Memory

• Peripherals

DSP based electrical lab

P a g e | 7

Department of Electrical & Electronics Engineering, GRIET-HYD.

DSP based electrical lab

P a g e | 8

Department of Electrical & Electronics Engineering, GRIET-HYD.

Hardware and Software Requirements:
1. EzDSPF2812 Kit.
2. Parallel Port cable
3. Power supply

3. Code Composer studio V5 or V6
4. OS-Windows 7

Instructions to configure the Computer Parallel Port

1. Enter into BIOS mode by pressing DEL or F2 Key
2. Go to IO Configuration (Option Differs based on Mother Board Manufacture)

3. Set parallel port address as 0x378 and mode as EPP/ECP
4. Press F10 to Save and Exit.
5. Refer below image for reference

DSP based electrical lab

P a g e | 9

Department of Electrical & Electronics Engineering, GRIET-HYD.

Instructions to install Code Composer Studio V5:

1. Launch the setup from the CCS V5 CD

2. Accept the agreement and NEXT

3. Select the folder to install “default C:\TI” and NEXT

4. Select custom and NEXT

5. Select only C28x 32bit Real time CPU MCU and NEXT

6. In Compiler tools, Select TI C2800 Compiler tools and TI Documentation

7. In device software select both DSP BIOS V5 /SYS BIOS v6

8. Select TI Simulators and NEXT

9. In JTAG Emulator Support select Spectrum digital emulators, TI

Emulators(Default), XDS100Emulators and NEXT

10. In CCS Install Options window and NEXT

11. Finally, it will take 20 minutes install the CCS

Instructions to verify the ezDSP’s connection with sdconfig :

1. Connect the ezDSP with the Computer with parallel port cable and Power on the

ezDSP board

2. Open SdConfigEx v5 from the desktop

3. Double Click XDS510PP-SPI515 and select 378.

4. Double click 378 and select emu and Change the Emulator port mode to EPP as

shown below

DSP based electrical lab

P a g e | 10

Department of Electrical & Electronics Engineering, GRIET-HYD.

5. Now Press the R Button or Go to Emulator Menu and Select Reset

6. “Emulator is reset” message will display in the configuration Tab as shown below

DSP based electrical lab

P a g e | 11

Department of Electrical & Electronics Engineering, GRIET-HYD.

7. Now Press the EMU with Tick Button or Go to Emulator Menu and Select Test.

8. JTAG IR Length of 38 Message will display in Configuration tab as shown below

9. If the Emulator rest and JTAG IR length as 38 shows the connection between the

system and ezDSP is OK.

10. Now close SD Config.

DSP based electrical lab

P a g e | 12

Department of Electrical & Electronics Engineering, GRIET-HYD.

CCS V6 License Setup.

1. Open CCS V6

2. Go to Help Menu->Code Composer Studio License Information

3. Go to Upgrade Tab-> launch License setup

4. Select Evaluate(90days) or Free License (Onboard and XDS 100 Emulators)

5. Press Finish Button.

Instructions to configure and run sample programs in CCS V6.

1. Open CCSv6

2. It will ask for workspace location (By default it is user directory) and select OK

3. Go to Project Menu-> Import Existing CCS Project

4. Now Select the search directory to F2812_example_nonBIOS_ram and press

finish button

5. Go to File menu ->New->Target Configuration File and Press finish button in the

newly opened window

6. Now it will ask you to select the Connection Type and Board Type and save as

shown below

7. Go to Project menu->Build all

8. After project built, .out file will be generated as shown on Console window

DSP based electrical lab

P a g e | 13

Department of Electrical & Electronics Engineering, GRIET-HYD.

9. Go to Run Menu -> Select Debug or F11 Key

10. To run program, Go to Run Menu -> Select Resume or F8 Key

11. Now the DS2 Led in the ezDSP F2812 will blinking continuously

12. Then Go to Run Menu ->Select suspend then select terminate.

Instructions to Create a New Project in CCS V6

1. Open CCSv6

2. Go to File Menu-> New -> CCS Project

3. Type Project name and other Leave it to default

4. Select Device family as C2000 and variant as 281X Fixed Point and EZDSPf2812

5. Connection as Spectrum Digital ezDSP F2812 Parallel port Emulator

6. Select project templates as empty project and press finish button

7. Now add source files and Cmd by right click the project name in the Project

Explorer

8. Follow the Step s 5 to 12 from Instructions to configure and run sample

programs in CCS V6.

DSP based electrical lab

P a g e | 14

Department of Electrical & Electronics Engineering, GRIET-HYD.

Program No 1: Blinking on-board LED

Date:

Objective:

To run a program that blinks the onboard LED

Equipment required:

 Hardware:

• Laptop

• TMS320F28027 Launchpad

• XDS100v2 USB cable

Software:
• Code Composer Studio 6.0

• Windows 8 OS.

Program:

// TITLE: DSP28027 LED Blink Getting Started Program.

#include "DSP28x_Project.h"

interrupt void cpu_timer0_isr(void);

void main(void)

{

 InitSysCtrl();

 DINT;

 InitPieCtrl();

 IER = 0x0000;

 IFR = 0x0000;

 InitPieVectTable();

DSP based electrical lab

P a g e | 15

Department of Electrical & Electronics Engineering, GRIET-HYD.

 EALLOW;

 PieVectTable.TINT0 = &cpu_timer0_isr;

 EDIS;

 InitCpuTimers();

 ConfigCpuTimer(&CpuTimer0, 60, 500000);

 CpuTimer0Regs.TCR.all = 0x4001;

 EALLOW;

 GpioCtrlRegs.GPBMUX1.bit.GPIO34 = 0;

 GpioCtrlRegs.GPBDIR.bit.GPIO34 = 1;

 EDIS;

 IER |= M_INT1;

 PieCtrlRegs.PIEIER1.bit.INTx7 = 1;

 EINT;

 ERTM;

 for(;;);

}

interrupt void cpu_timer0_isr(void)

{

 CpuTimer0.InterruptCount++;

 GpioDataRegs.GPBTOGGLE.bit.GPIO34 = 1;

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

}

//===

// No more.

//===

DSP based electrical lab

P a g e | 16

Department of Electrical & Electronics Engineering, GRIET-HYD.

Result:

Watch Variables:

CpuTimer0.InterruptCount

Monitor the GPIO34 LED blink ON and OFF on the TMS320F28027 Launchpad.

DSP based electrical lab

P a g e | 17

Department of Electrical & Electronics Engineering, GRIET-HYD.

Program No 2: Watchdog with CPU Timer interrupts

Date:

Objective:

To run a program that configures the CPU timer and counter

Equipment required:

 Hardware:

• Laptop

• TMS320F28027 Launchpad

• XDS100v2 USB cable

Software:
• Code Composer Studio 6.0

• Windows 8 OS.

Program:

// TITLE: DSP28027 Device Getting Started with timer and counter

#include "DSP28x_Project.h"

interrupt void cpu_timer0_isr(void);

interrupt void cpu_timer1_isr(void);

interrupt void cpu_timer2_isr(void);

void main(void)

{

 InitSysCtrl();

 DINT;

DSP based electrical lab

P a g e | 18

Department of Electrical & Electronics Engineering, GRIET-HYD.

 InitPieCtrl();

 IER = 0x0000;

 IFR = 0x0000;

 InitPieVectTable();

 EALLOW;

 PieVectTable.TINT0 = &cpu_timer0_isr;

 PieVectTable.TINT1 = &cpu_timer1_isr;

 PieVectTable.TINT2 = &cpu_timer2_isr;

 EDIS;

 InitCpuTimers();

#if (CPU_FRQ_60MHZ)

 ConfigCpuTimer(&CpuTimer0, 60, 1000000);

 ConfigCpuTimer(&CpuTimer1, 60, 1000000);

 ConfigCpuTimer(&CpuTimer2, 60, 1000000);

#endif

#if (CPU_FRQ_50MHZ)

 ConfigCpuTimer(&CpuTimer0, 50, 1000000);

 ConfigCpuTimer(&CpuTimer1, 50, 1000000);

 ConfigCpuTimer(&CpuTimer2, 50, 1000000);

#endif

DSP based electrical lab

P a g e | 19

Department of Electrical & Electronics Engineering, GRIET-HYD.

#if (CPU_FRQ_40MHZ)

 ConfigCpuTimer(&CpuTimer0, 40, 1000000);

 ConfigCpuTimer(&CpuTimer1, 40, 1000000);

 ConfigCpuTimer(&CpuTimer2, 40, 1000000);

#endif

 CpuTimer0Regs.TCR.all = 0x4001;

 CpuTimer1Regs.TCR.all = 0x4001;

 CpuTimer2Regs.TCR.all = 0x4001;

 IER |= M_INT1;

 IER |= M_INT13;

 IER |= M_INT14;

 PieCtrlRegs.PIEIER1.bit.INTx7 = 1;

 EINT;

 ERTM;

 for(;;);

}

interrupt void cpu_timer0_isr(void)

{

 CpuTimer0.InterruptCount++;

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

}

DSP based electrical lab

P a g e | 20

Department of Electrical & Electronics Engineering, GRIET-HYD.

interrupt void cpu_timer1_isr(void)

{

 CpuTimer1.InterruptCount++;

 EDIS;

}

interrupt void cpu_timer2_isr(void)

{

 EALLOW;

 CpuTimer2.InterruptCount++;

 EDIS;

}

//==

// No more.

//==

DSP based electrical lab

P a g e | 21

Department of Electrical & Electronics Engineering, GRIET-HYD.

Result:

Watch Variables:

 CpuTimer0.InterruptCount

 CpuTimer1.InterruptCount

 CpuTimer2.InterruptCount

Observe the timer registers and configuration of CPU Timer0, 1, & 2 and increments a

counter each time the timer asserts an interrupt.

DSP based electrical lab

P a g e | 22

Department of Electrical & Electronics Engineering, GRIET-HYD.

Program No 3: Implementing a for loop

Date:

Objective:

To run a program to find square of a given number using for loop

Equipment required:

 Hardware:

• Laptop

• TMS320F28027 Launchpad

• XDS100v2 USB cable

Software:
• Code Composer Studio 6.0

• Windows 8 OS.

Program:

 unsigned int k;
void main(void)

{

 unsigned int i;

 while(1)

 {

 for(i=0; i<100; i++)

 k=i*i;

 }

}

//==

// No more.

//==

DSP based electrical lab

P a g e | 23

Department of Electrical & Electronics Engineering, GRIET-HYD.

Result:

Watch variables:

 i

k

Observe the variables at each step forward at watchdog and find the square of the given
number.

DSP based electrical lab

P a g e | 24

Department of Electrical & Electronics Engineering, GRIET-HYD.

Program No 4: Factorial of a number using for loop

Date:

Objective:

To run a program to find factorial of a given number using for loop

Equipment required:

 Hardware:

• Laptop

• TMS320F28027 Launchpad

• XDS100v2 USB cable

Software:
• Code Composer Studio 6.0

• Windows 8 OS.

Program:

#include<stdio.h>

int main()

{

int input,i,result=1;

printf("please input a Integer: ");

scanf("%d",&input);

for(i=input;i>0;i--)

{

result=result*i;

}

printf("the factorial of %d is %d\n",input,result);

}

//==

// No more.

//==

DSP based electrical lab

P a g e | 25

Department of Electrical & Electronics Engineering, GRIET-HYD.

Result:

Watch variables:

 i

result

Observe the variables at each step forward at watchdog and find the factorial of the
given number.

DSP based electrical lab

P a g e | 26

Department of Electrical & Electronics Engineering, GRIET-HYD.

Program No 5: Generation of a Square wave

Date:

Objective:

To write a program to generate a Square wave

Equipment required:

Hardware:

• PC

• TMS320F2812

• Power supply adaptor cable

• DB25 connector printer cable

Software:

• Code composer studio 5.5.0

• Windows 8 OS.

Program:

include<stdio.h>

#include<math.h>

void main()

{

 int *square;

 int i;

 square =(int*)0xC0000000;

 while(1)

 {

DSP based electrical lab

P a g e | 27

Department of Electrical & Electronics Engineering, GRIET-HYD.

 for(i=0;i<50;i++)

 {

 *square++=0x0000FFFF;

 }

 for(i=0;i<50;i++)

 {

 *square++=0x0;

 }

 }

}

//==

// No more.

//=== ===

DSP based electrical lab

P a g e | 28

Department of Electrical & Electronics Engineering, GRIET-HYD.

Result:
Watch variables

 i

 *square

View the graph of square wave by entering the following graph properties .

Graph:

DSP based electrical lab

P a g e | 29

Department of Electrical & Electronics Engineering, GRIET-HYD.

Program No 6: Generation of a Triangular wave

Date:

Objective:

To write a program to generate a Triangular wave

Equipment required:

Hardware:

• PC

• TMS320F2812

• Power supply adaptor cable

• DB25 connector printer cable

Software:

• Code composer studio 5.5.0

• Windows 8 OS.

Program:

//Generation of Triangular wave

#include <stdio.h>

 #include <math.h>

void main()

 {

int *Triangle;

int i=0,j=0;

 Triangle = (int*)0xC0000000;

DSP based electrical lab

P a g e | 30

Department of Electrical & Electronics Engineering, GRIET-HYD.

while(1)

 { for(i=0;i<50;i++)

 {

 j=j+1;

 *Triangle++ = j;

 }

 for(i=50;i>0;i--)

 { j=j-1;

 *Triangle++ = j;

 }

 }

 }

//==

// No more.

//==

DSP based electrical lab

P a g e | 31

Department of Electrical & Electronics Engineering, GRIET-HYD.

Result:
Watch variables

 i

 *triangle

View the graph of triangular wave by entering the following graph properties.

Graph:

DSP based electrical lab

P a g e | 32

Department of Electrical & Electronics Engineering, GRIET-HYD.

Program No 7: Generation of a Sine wave

Date:

Objective:

To write a program to generate a Sine wave

Equipment required:

Hardware:

• PC

• TMS320F2812

• Power supply adaptor cable

• DB25 connector printer cable

Software:

• Code composer studio 5.5.0

• Windows 8 OS.

Program:

//Generation of Sine wave

#include<stdio.h>

#include<math.h>

float a[128];

main()

{

int i;

for (i=0;i<128;i++)

{

DSP based electrical lab

P a g e | 33

Department of Electrical & Electronics Engineering, GRIET-HYD.

a[i]= sin(2*3.14*1000*i/24000);

printf("%f", a[i]);

}

}

//==

// No more.

//==

DSP based electrical lab

P a g e | 34

Department of Electrical & Electronics Engineering, GRIET-HYD.

Result:
Watch variables

 i

View the graph of Sine wave by entering the following graph properties.

Graph:

DSP based electrical lab

P a g e | 35

Department of Electrical & Electronics Engineering, GRIET-HYD.

Program No 8: Acquisition of signal from ADC

Date:

Objective:

To write a program to acquire a signal from ADC terminals.

Equipments required:

 Hardware:

• PC

• TMS320F2812 eZdsp kit

• Power supply adaptor cable

• DB25 connector printer cable

 Software:

• Code composer studio 5.5.0

• Windows 8 OS.

Program:

#include "DSP28x_Project.h"

interrupt void adc_isr(void);

void Adc_Config(void);

Uint16 LoopCount;

Uint16 ConversionCount;

Uint16 Voltage1[10];

Uint16 Voltage2[10];

main()

{

 InitSysCtrl();

 DINT;

 InitPieCtrl();

DSP based electrical lab

P a g e | 36

Department of Electrical & Electronics Engineering, GRIET-HYD.

 IER = 0x0000;

 IFR = 0x0000;

 InitPieVectTable();

 EALLOW;

 PieVectTable.ADCINT1 = &adc_isr;

 EDIS;

 InitAdc();

 PieCtrlRegs.PIEIER1.bit.INTx1 = 1;

 IER |= M_INT1;

 EINT;

 ERTM;

 LoopCount = 0;

 ConversionCount = 0;

 EALLOW;

 AdcRegs.ADCCTL1.bit.INTPULSEPOS = 1;

 AdcRegs.INTSEL1N2.bit.INT1E = 1;

 AdcRegs.INTSEL1N2.bit.INT1CONT = 0;

 AdcRegs.INTSEL1N2.bit.INT1SEL = 2;

 AdcRegs.ADCSOC0CTL.bit.CHSEL = 4;

 AdcRegs.ADCSOC1CTL.bit.CHSEL = 4;

 AdcRegs.ADCSOC2CTL.bit.CHSEL = 2;

 AdcRegs.ADCSOC0CTL.bit.TRIGSEL = 5;

 AdcRegs.ADCSOC1CTL.bit.TRIGSEL = 5;

 AdcRegs.ADCSOC2CTL.bit.TRIGSEL = 5;

 AdcRegs.ADCSOC0CTL.bit.ACQPS = 6;

DSP based electrical lab

P a g e | 37

Department of Electrical & Electronics Engineering, GRIET-HYD.

 AdcRegs.ADCSOC1CTL.bit.ACQPS = 6;

 AdcRegs.ADCSOC2CTL.bit.ACQPS = 6;

 EDIS;

 EPwm1Regs.ETSEL.bit.SOCAEN = 1;

 EPwm1Regs.ETSEL.bit.SOCASEL = 4;

 EPwm1Regs.ETPS.bit.SOCAPRD = 1;

 EPwm1Regs.CMPA.half.CMPA = 0x0080;

 EPwm1Regs.TBPRD = 0xFFFF;

 EPwm1Regs.TBCTL.bit.CTRMODE = 0;

 for(;;)

 {

 LoopCount++;

 }

}

interrupt void adc_isr(void)

{

 Voltage1[ConversionCount] = AdcResult.ADCRESULT1;

 Voltage2[ConversionCount] = AdcResult.ADCRESULT2;

 if(ConversionCount == 9)

 {

 ConversionCount = 0;

 }

 else ConversionCount++;

 AdcRegs.ADCINTFLGCLR.bit.ADCINT1 = 1;

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

 return;

}

//==

// No more.

//==

DSP based electrical lab

P a g e | 38

Department of Electrical & Electronics Engineering, GRIET-HYD.

Result:

Watch Variables:

 Voltage1[10] Last 10 ADCRESULT0 values

 Voltage2[10] Last 10 ADCRESULT1 values

 ConversionCount Current result number 0-9

 LoopCount Idle loop counter

Observe the values from the ADC (GPIO) pins of the processor.

DSP based electrical lab

P a g e | 39

Department of Electrical & Electronics Engineering, GRIET-HYD.

Program No 9: Initializing the Event Manager

Date:

Objective:

To write a program to fire an interrupt by initializing an event manager.

Equipment required:

 Hardware:

• PC

• TMS320F2812 eZdsp kit

• Power supply adaptor cable

• DB25 connector printer cable

 Software:

• Code composer studio 5.5.0

• Windows 8 OS.

Program:

#include "DSP281x_Device.h"

#include "DSP281x_Examples.h"

interrupt void eva_timer1_isr(void);

interrupt void eva_timer2_isr(void);

interrupt void evb_timer3_isr(void);

interrupt void evb_timer4_isr(void);

void init_eva_timer1(void);

void init_eva_timer2(void);

void init_evb_timer3(void);

void init_evb_timer4(void);

Uint32 EvaTimer1InterruptCount;

Uint32 EvaTimer2InterruptCount;

Uint32 EvbTimer3InterruptCount;

Uint32 EvbTimer4InterruptCount;

DSP based electrical lab

P a g e | 40

Department of Electrical & Electronics Engineering, GRIET-HYD.

void main(void)

{

 InitSysCtrl();

 DINT;

 InitPieCtrl();

 IER = 0x0000;

 IFR = 0x0000;

 InitPieVectTable();

 EALLOW;

 PieVectTable.T1PINT = &eva_timer1_isr;

 PieVectTable.T2PINT = &eva_timer2_isr;

 PieVectTable.T3PINT = &evb_timer3_isr;

 PieVectTable.T4PINT = &evb_timer4_isr;

 EDIS;

 init_eva_timer1();

 init_eva_timer2();

 init_evb_timer3();

 init_evb_timer4();

 EvaTimer1InterruptCount = 0;

 EvaTimer2InterruptCount = 0;

 EvbTimer3InterruptCount = 0;

 EvbTimer4InterruptCount = 0;

 PieCtrlRegs.PIEIER2.all = M_INT4;

 PieCtrlRegs.PIEIER3.all = M_INT1;

 PieCtrlRegs.PIEIER4.all = M_INT4;

 PieCtrlRegs.PIEIER5.all = M_INT1;

DSP based electrical lab

P a g e | 41

Department of Electrical & Electronics Engineering, GRIET-HYD.

 IER |= (M_INT2 | M_INT3 | M_INT4 | M_INT5);

 EINT;

 ERTM;

 for(;;);

}

void init_eva_timer1(void)

{

 EvaRegs.GPTCONA.all = 0;

 EvaRegs.T1PR = 0x0200;

 EvaRegs.T1CMPR = 0x0000;

 EvaRegs.EVAIMRA.bit.T1PINT = 1;

 EvaRegs.EVAIFRA.bit.T1PINT = 1;

 EvaRegs.T1CNT = 0x0000;

 EvaRegs.T1CON.all = 0x1742;

 EvaRegs.GPTCONA.bit.T1TOADC = 2;

}

void init_eva_timer2(void)

{

 EvaRegs.GPTCONA.all = 0;

 EvaRegs.T2PR = 0x0400;

 EvaRegs.T2CMPR = 0x0000;

 EvaRegs.EVAIMRB.bit.T2PINT = 1;

 EvaRegs.EVAIFRB.bit.T2PINT = 1;

 EvaRegs.T2CNT = 0x0000;

 EvaRegs.T2CON.all = 0x1742;

 EvaRegs.GPTCONA.bit.T2TOADC = 2;

}

DSP based electrical lab

P a g e | 42

Department of Electrical & Electronics Engineering, GRIET-HYD.

void init_evb_timer3(void)

{

 EvbRegs.GPTCONB.all = 0;

 EvbRegs.T3PR = 0x0800;

 EvbRegs.T3CMPR = 0x0000;

 EvbRegs.EVBIMRA.bit.T3PINT = 1;

 EvbRegs.EVBIFRA.bit.T3PINT = 1;

 EvbRegs.T3CNT = 0x0000;

 EvbRegs.T3CON.all = 0x1742;

 EvbRegs.GPTCONB.bit.T3TOADC = 2;

}

void init_evb_timer4(void)

{

 EvbRegs.GPTCONB.all = 0;

 EvbRegs.T4PR = 0x1000;

 EvbRegs.T4CMPR = 0x0000;

 EvbRegs.EVBIMRB.bit.T4PINT = 1;

 EvbRegs.EVBIFRB.bit.T4PINT = 1;

 EvbRegs.T4CNT = 0x0000;

 EvbRegs.T4CON.all = 0x1742;

 EvbRegs.GPTCONB.bit.T4TOADC = 2;

}

interrupt void eva_timer1_isr(void)

{

 EvaTimer1InterruptCount++;

 EvaRegs.EVAIMRA.bit.T1PINT = 1;

 EvaRegs.EVAIFRA.all = BIT7;

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP2;

}

DSP based electrical lab

P a g e | 43

Department of Electrical & Electronics Engineering, GRIET-HYD.

interrupt void eva_timer2_isr(void)

{

 EvaTimer2InterruptCount++;

 EvaRegs.EVAIMRB.bit.T2PINT = 1;

 EvaRegs.EVAIFRB.all = BIT0;

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;

}

interrupt void evb_timer3_isr(void)

{

 EvbTimer3InterruptCount++;

 EvbRegs.EVBIFRA.all = BIT7;

PieCtrlRegs.PIEACK.all = PIEACK_GROUP4;

}

interrupt void evb_timer4_isr(void)

{

 EvbTimer4InterruptCount++;

 EvbRegs.EVBIFRB.all = BIT0;

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP5;

}

//==

// No more.

//==

DSP based electrical lab

P a g e | 44

Department of Electrical & Electronics Engineering, GRIET-HYD.

Result:

Watch Variables:

EvaTimer1InterruptCount;

 EvaTimer2InterruptCount;

 EvbTimer3InterruptCount;

 EvbTimer4InterruptCount;

 Observe that after debugging the program, it sets up EVA Timer 1, EVA Timer 2, EVB

Timer 3 and EVB Timer 4 to fire an interrupt on a period overflow.

 Also, a count is kept each time each interrupt passes through the interrupt service

routine.

 EVA Timer 1 has the shortest period while EVB Timer4 has the longest period.

DSP based electrical lab

P a g e | 45

Department of Electrical & Electronics Engineering, GRIET-HYD.

Program No 10: Generation of 1 kHz PWM Pulses at 50% and 75% Duty cycles

Date:

Objective:

To run a program that can generates PWM pulses at 1 kHz for different duty cycles.

Equipment required:

 Hardware:

• Laptop

• TMS320F28027 Launchpad

• XDS100v2 USB cable

• CRO

Software:
• Code Composer Studio 6.0

• Windows 8 OS.

Program:

#include "DSP28x_Project.h"

extern void InitSysCtrl(void);

void Gpio_select(void);

void Setup_ePWM1(void);

void main(void)

{

 InitSysCtrl();

 EALLOW;

 SysCtrlRegs.WDCR= 0x00EF;

 EDIS;

 Gpio_select();

 Setup_ePWM1();

 ERTM;

 while(1);

DSP based electrical lab

P a g e | 46

Department of Electrical & Electronics Engineering, GRIET-HYD.

}

void Gpio_select(void)

{

 EALLOW;

 GpioCtrlRegs.GPAMUX1.all = 0;

 GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 1;

 GpioCtrlRegs.GPAMUX1.bit.GPIO1 = 1;

 GpioCtrlRegs.GPAMUX2.all = 0;

GpioCtrlRegs.GPBMUX1.all = 0;

 GpioCtrlRegs.GPADIR.all = 0;

 GpioCtrlRegs.GPBDIR.all = 0;

 EDIS;

}

void Setup_ePWM1(void)

{

 EPwm1Regs.TBCTL.bit.CLKDIV = 0;

 EPwm1Regs.TBCTL.bit.HSPCLKDIV = 1;

 EPwm1Regs.TBCTL.bit.CTRMODE = 2;

 EPwm1Regs.AQCTLA.all = 0x0060;

 EPwm1Regs.AQCTLB.all = 0x0600;

 EPwm1Regs.TBPRD = 37500;

 EPwm1Regs.CMPA.half.CMPA = EPwm1Regs.TBPRD / 2;

 EPwm1Regs.CMPB = EPwm1Regs.TBPRD / 2;

}

//==

// No more.

//==

DSP based electrical lab

P a g e | 47

Department of Electrical & Electronics Engineering, GRIET-HYD.

Result:
Watch variables

GpioCtrlRegs.GPAMUX1.bit.GPIO0

 GpioCtrlRegs.GPAMUX1.bit.GPIO1

By connecting the GPIO 0 and GPIO 1 pins to the CRO, PWM pulses can be observed.

Graphs:

DSP based electrical lab

P a g e | 48

Department of Electrical & Electronics Engineering, GRIET-HYD.

Program No 11: Generation of 5 kHz PWM Pulses at 25% Duty cycle

Date:

Objective:

To run a program that can generates PWM pulses at 5 kHz for 25% duty cycles.

Equipment required:

 Hardware:

• Laptop

• TMS320F28027 Launchpad

• XDS100v2 USB cable

• CRO

Software:
• Code Composer Studio 6.0

• Windows 8 OS.

Program:

#include "DSP28x_Project.h"

extern void InitSysCtrl(void);

void Gpio_select(void);

void Setup_ePWM1(void);

void main(void)

{

 InitSysCtrl();

 EALLOW;

 SysCtrlRegs.WDCR= 0x00EF;

 EDIS;

 Gpio_select();

DSP based electrical lab

P a g e | 49

Department of Electrical & Electronics Engineering, GRIET-HYD.

 Setup_ePWM1();

 ERTM;

 while(1);

}

void Gpio_select(void)

{

 EALLOW;

 GpioCtrlRegs.GPAMUX1.all = 0;

 GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 1;

 GpioCtrlRegs.GPAMUX1.bit.GPIO1 = 1;

 GpioCtrlRegs.GPAMUX2.all = 0;

 GpioCtrlRegs.GPBMUX1.all = 0;

 GpioCtrlRegs.GPADIR.all = 0;

 GpioCtrlRegs.GPBDIR.all = 0;

 EDIS;

}

void Setup_ePWM1(void)

{

 EPwm1Regs.TBCTL.bit.CLKDIV = 0;

 EPwm1Regs.TBCTL.bit.HSPCLKDIV = 1;

 EPwm1Regs.TBCTL.bit.CTRMODE = 2;

 EPwm1Regs.AQCTLA.all = 0x0060;

 EPwm1Regs.AQCTLB.all = 0x0090;

 EPwm1Regs.TBPRD = 750;

 EPwm1Regs.CMPA.half.CMPA = 1250;

}

//==

// No more.

//==

DSP based electrical lab

P a g e | 50

Department of Electrical & Electronics Engineering, GRIET-HYD.

Result:

Watch variables

GpioCtrlRegs.GPAMUX1.bit.GPIO0

 GpioCtrlRegs.GPAMUX1.bit.GPIO1

By connecting the GPIO 0 and GPIO 1 pins to the CRO, PWM pulses can be observed.

Graph:

DSP based electrical lab

P a g e | 51

Department of Electrical & Electronics Engineering, GRIET-HYD.

Program No 12: Generation of simple PWM pulses at 10 kHz

Date:

Objective:

To run a program that can generates PWM pulses at 5 kHz for 25% duty cycles.

Equipment required:

 Hardware:

• Laptop

• TMS320F28027 Launchpad

• XDS100v2 USB cable

• CRO

Software:
• Code Composer Studio 6.0

• Windows 8 OS.

Program:

#include "DSP28x_Project.h"

extern void InitSysCtrl(void);

void Gpio_select(void);

void Setup_ePWM1A(void);

void main(void)

{

InitSysCtrl();

 EALLOW;

 SysCtrlRegs.WDCR= 0x00EF;

 EDIS;

 DINT;

 Gpio_select();

DSP based electrical lab

P a g e | 52

Department of Electrical & Electronics Engineering, GRIET-HYD.

 Setup_ePWM1A();

 ERTM;

 while(1);

}

void Gpio_select(void)

{

 EALLOW;

 GpioCtrlRegs.GPAMUX1.all = 0;

 GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 1;

 GpioCtrlRegs.GPAMUX2.all = 0;

 GpioCtrlRegs.GPBMUX1.all = 0;

 GpioCtrlRegs.GPADIR.all = 0;

 GpioCtrlRegs.GPBDIR.all = 0;

 EDIS;

}

void Setup_ePWM1A(void)

{

 EPwm1Regs.TBCTL.bit.CLKDIV = 0;

 EPwm1Regs.TBCTL.bit.HSPCLKDIV = 1;

 EPwm1Regs.TBCTL.bit.CTRMODE = 2;

 EPwm1Regs.AQCTLA.all = 0x0006;

 EPwm1Regs.TBPRD = 1500;

}

//==

// No more.

//==

DSP based electrical lab

P a g e | 53

Department of Electrical & Electronics Engineering, GRIET-HYD.

Result:

Watch variables

GpioCtrlRegs.GPAMUX1.bit.GPIO0

 GpioCtrlRegs.GPAMUX1.bit.GPIO1

By connecting the GPIO 0 and GPIO 1 pins to the CRO, PWM pulses can be observed.

Graph:

DSP based electrical lab

P a g e | 54

Department of Electrical & Electronics Engineering, GRIET-HYD.

Program No 13: Generation of ePWM pulses with a dead-band (delay routine)

Date:

Objective:

To run a program that can generates ePWM pulses with a dead region.

Equipment required:

 Hardware:

• Laptop

• TMS320F28027 Launchpad

• XDS100v2 USB cable

• CRO

Software:
• Code Composer Studio 6.0

• Windows 8 OS.

Program:

#include "DSP28x_Project.h"

void InitEPwm1Example(void);

interrupt void epwm1_isr(void);

Uint32 EPwm1TimerIntCount;

Uint16 EPwm1_DB_Direction;

#define EPWM1_MAX_DB 0x03FF

#define EPWM1_MIN_DB 0

#define DB_UP 1

#define DB_DOWN 0

DSP based electrical lab

P a g e | 55

Department of Electrical & Electronics Engineering, GRIET-HYD.

void main(void)

{

 InitSysCtrl();

 InitEPwm1Gpio();

 DINT;

 InitPieCtrl();

 IER = 0x0000;

 IFR = 0x0000;

 InitPieVectTable();

 EALLOW;

 PieVectTable.EPWM1_INT = &epwm1_isr;

 EDIS;

 EALLOW;

 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;

 EDIS;

 InitEPwm1Example();

 EALLOW;

 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;

 EDIS;

 EPwm1TimerIntCount = 0;

 IER |= M_INT3;

 PieCtrlRegs.PIEIER3.bit.INTx1 = 1;

 EINT;

 ERTM;

DSP based electrical lab

P a g e | 56

Department of Electrical & Electronics Engineering, GRIET-HYD.

for(;;)

 {

 asm(" NOP");

 }

}

interrupt void epwm1_isr(void)

{

 if(EPwm1_DB_Direction == DB_UP)

 {

 if(EPwm1Regs.DBFED < EPWM1_MAX_DB)

 {

 EPwm1Regs.DBFED++;

 EPwm1Regs.DBRED++;

 }

 else

 {

 EPwm1_DB_Direction = DB_DOWN;

 EPwm1Regs.DBFED--;

 EPwm1Regs.DBRED--;

 }

 }

 else

 {

 if(EPwm1Regs.DBFED == EPWM1_MIN_DB)

 {

 EPwm1_DB_Direction = DB_UP;

 EPwm1Regs.DBFED++;

 EPwm1Regs.DBRED++;

 }

 else

 {

DSP based electrical lab

P a g e | 57

Department of Electrical & Electronics Engineering, GRIET-HYD.

 EPwm1Regs.DBFED--;

 EPwm1Regs.DBRED--;

 }

 }

 EPwm1TimerIntCount++;

 EPwm1Regs.ETCLR.bit.INT = 1;

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;

}

void InitEPwm1Example()

{

 EPwm1Regs.TBPRD = 6000;

 EPwm1Regs.TBPHS.half.TBPHS = 0x0000;

 EPwm1Regs.TBCTR = 0x0000;

 EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN;

 EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE;

 EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4;

 EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV4;

 EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;

 EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;

 EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;

 EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;

 EPwm1Regs.CMPA.half.CMPA = 3000;

 EPwm1Regs.AQCTLA.bit.CAU = AQ_SET;

 EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR;

 EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR;

 EPwm1Regs.AQCTLB.bit.CAD = AQ_SET;

DSP based electrical lab

P a g e | 58

Department of Electrical & Electronics Engineering, GRIET-HYD.

 // Active Low PWMs - Setup Deadband

 EPwm1Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;

 EPwm1Regs.DBCTL.bit.POLSEL = DB_ACTV_LO;

 EPwm1Regs.DBCTL.bit.IN_MODE = DBA_ALL;

 EPwm1Regs.DBRED = EPWM1_MIN_DB;

 EPwm1Regs.DBFED = EPWM1_MIN_DB;

 EPwm1_DB_Direction = DB_UP;

 // Interrupt where we will change the Deadband

 EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO;

 EPwm1Regs.ETSEL.bit.INTEN = 1;

 EPwm1Regs.ETPS.bit.INTPRD = ET_3RD;

}

//===

// No more.

//===

DSP based electrical lab

P a g e | 59

Department of Electrical & Electronics Engineering, GRIET-HYD.

Result:

Watch variables

GpioCtrlRegs.GPAMUX1.bit.GPIO0

 GpioCtrlRegs.GPAMUX1.bit.GPIO1

EPwm1Regs.TBCTL.bit.CTRMODE

EPwm1Regs.DBCTL.bit.OUT_MODE

EPwm1Regs.ETSEL.bit.INTSEL

By connecting the GPIO 0 and GPIO 1 pins to the CRO, PWM pulses with dead-band can
be observed.

Graph:

DSP based electrical lab

P a g e | 60

Department of Electrical & Electronics Engineering, GRIET-HYD.

Program No 14: An example to run a program in FLASH memory

Date:

Objective:

To run a program that can run the program in FLASH memory.

Equipment required:

 Hardware:

• Laptop

• TMS320F28027 Launchpad

• XDS100v2 USB cable

• CRO

Software:
• Code Composer Studio 6.0

• Windows 8 OS.

Program:

#include "DSP28x_Project.h"

#define PWM1_INT_ENABLE 1

#define PWM2_INT_ENABLE 1

#define PWM3_INT_ENABLE 1

// Configure the period for each timer

#define PWM1_TIMER_TBPRD 0x1FFF

#define PWM2_TIMER_TBPRD 0x1FFF

#define PWM3_TIMER_TBPRD 0x1FFF

#define DELAY 1000000L

DSP based electrical lab

P a g e | 61

Department of Electrical & Electronics Engineering, GRIET-HYD.

#pragma CODE_SECTION(EPwm1_timer_isr, "ramfuncs");

#pragma CODE_SECTION(EPwm2_timer_isr, "ramfuncs");

interrupt void EPwm1_timer_isr(void);

interrupt void EPwm2_timer_isr(void);

interrupt void EPwm3_timer_isr(void);

void InitEPwmTimer(void);

Uint32 EPwm1TimerIntCount;

Uint32 EPwm2TimerIntCount;

Uint32 EPwm3TimerIntCount;

Uint32 LoopCount;

extern Uint16 RamfuncsLoadStart;

extern Uint16 RamfuncsLoadEnd;

extern Uint16 RamfuncsRunStart;

void main(void)

{

 InitSysCtrl();

 DINT;

 InitPieCtrl();

 IER = 0x0000;

 IFR = 0x0000;

 InitPieVectTable();

 EALLOW; // This is needed to write to EALLOW protected registers

 PieVectTable.EPWM1_INT = &EPwm1_timer_isr;

 PieVectTable.EPWM2_INT = &EPwm2_timer_isr;

DSP based electrical lab

P a g e | 62

Department of Electrical & Electronics Engineering, GRIET-HYD.

 PieVectTable.EPWM3_INT = &EPwm3_timer_isr;

 EDIS;

 InitEPwmTimer();

 EPwm2_timer_isr()

 MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);

 InitFlash();

 EPwm1TimerIntCount = 0;

 EPwm2TimerIntCount = 0;

 EPwm3TimerIntCount = 0;

 LoopCount = 0;

 IER |= M_INT3;

 PieCtrlRegs.PIEIER3.bit.INTx1 = PWM1_INT_ENABLE;

 PieCtrlRegs.PIEIER3.bit.INTx2 = PWM2_INT_ENABLE;

 PieCtrlRegs.PIEIER3.bit.INTx3 = PWM3_INT_ENABLE;

 EINT; // Enable Global interrupt INTM

 ERTM; // Enable Global realtime interrupt DBGM

 EALLOW;

 GpioCtrlRegs.GPBMUX1.bit.GPIO34 = 0;

 GpioCtrlRegs.GPBDIR.bit.GPIO34 = 1;

 EDIS;

 for(;;)

 {

 DELAY_US(DELAY);

 LoopCount++;

 GpioDataRegs.GPBTOGGLE.bit.GPIO34 = 1;

 }

}

DSP based electrical lab

P a g e | 63

Department of Electrical & Electronics Engineering, GRIET-HYD.

void InitEPwmTimer()

{

 EALLOW;

 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;

 EDIS;

 InitEPwm1Gpio();

 InitEPwm2Gpio();

 InitEPwm3Gpio();

 // Setup Sync

 EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // Pass through

 EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // Pass through

 EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // Pass through

 // Allow each timer to be sync'ed

 EPwm1Regs.TBCTL.bit.PHSEN = TB_ENABLE;

 EPwm2Regs.TBCTL.bit.PHSEN = TB_ENABLE;

 EPwm3Regs.TBCTL.bit.PHSEN = TB_ENABLE;

 EPwm1Regs.TBPHS.half.TBPHS = 100;

 EPwm2Regs.TBPHS.half.TBPHS = 200;

 EPwm3Regs.TBPHS.half.TBPHS = 300;

 EPwm1Regs.TBPRD = PWM1_TIMER_TBPRD;

 EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up

 EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event

 EPwm1Regs.ETSEL.bit.INTEN = PWM1_INT_ENABLE; // Enable INT

 EPwm1Regs.ETPS.bit.INTPRD = ET_1ST; // Generate INT on 1st event

DSP based electrical lab

P a g e | 64

Department of Electrical & Electronics Engineering, GRIET-HYD.

 EPwm2Regs.TBPRD = PWM2_TIMER_TBPRD;

 EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up

 EPwm2Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Enable INT on Zero event

 EPwm2Regs.ETSEL.bit.INTEN = PWM2_INT_ENABLE; // Enable INT

 EPwm2Regs.ETPS.bit.INTPRD = ET_2ND; // Generate INT on 2nd event

 EPwm3Regs.TBPRD = PWM3_TIMER_TBPRD;

 EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up

 EPwm3Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Enable INT on Zero event

 EPwm3Regs.ETSEL.bit.INTEN = PWM3_INT_ENABLE; // Enable INT

 EPwm3Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event

 EPwm1Regs.CMPA.half.CMPA = PWM1_TIMER_TBPRD/2;

 EPwm1Regs.AQCTLA.bit.PRD = AQ_SET;

 EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR;

 EPwm1Regs.AQCTLB.bit.PRD = AQ_SET;

 EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR;

 EPwm2Regs.CMPA.half.CMPA = PWM2_TIMER_TBPRD/2;

 EPwm2Regs.AQCTLA.bit.PRD = AQ_SET;

 EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR;

 EPwm2Regs.AQCTLB.bit.PRD = AQ_SET;

 EPwm2Regs.AQCTLB.bit.CAU = AQ_CLEAR;

 EPwm3Regs.CMPA.half.CMPA = PWM3_TIMER_TBPRD/2;

 EPwm3Regs.AQCTLA.bit.PRD = AQ_SET;

 EPwm3Regs.AQCTLA.bit.CAU = AQ_CLEAR;

 EPwm3Regs.AQCTLB.bit.PRD = AQ_SET;

 EPwm3Regs.AQCTLB.bit.CAU = AQ_CLEAR;

 EALLOW;

 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1; // Start all the timers synced

 EDIS;

}

DSP based electrical lab

P a g e | 65

Department of Electrical & Electronics Engineering, GRIET-HYD.

interrupt void EPwm1_timer_isr(void)

{

 FlashRegs.FPWR.bit.PWR = FLASH_SLEEP;

 EPwm1TimerIntCount++;

 EPwm1Regs.ETCLR.bit.INT = 1;

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;

}

// This ISR MUST be executed from RAM as it will put the Flash into Standby

interrupt void EPwm2_timer_isr(void)

{

 EPwm2TimerIntCount++;

 FlashRegs.FPWR.bit.PWR = FLASH_STANDBY;

 EPwm2Regs.ETCLR.bit.INT = 1;

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;

}

interrupt void EPwm3_timer_isr(void)

{

 Uint16 i;

 EPwm3TimerIntCount++;

 for(i = 1; i < 0x01FF; i++) {}

 EPwm3Regs.ETCLR.bit.INT = 1;

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;

}

//===

// No more.

//===

DSP based electrical lab

P a g e | 66

Department of Electrical & Electronics Engineering, GRIET-HYD.

Result:

Watch variables

EPwm3TimerIntCount++;

EPwm2TimerIntCount++;

EPwm3TimerIntCount++;

After loading the program in to the Launchpad, by connecting the GPIO pins to the CRO,
the output can be seen on the CRO.

Graph:

DSP based electrical lab

P a g e | 67

Department of Electrical & Electronics Engineering, GRIET-HYD.

Program No 15: Interfacing an LED

Date:

Objective:

To run a program that can flash the LED with the delay.

Equipment required:

 Hardware:

• Laptop

• TMS320F28027 Launchpad

• XDS100v2 USB cable

Software:
• Code Composer Studio 6.0

• Windows 8 OS.

Program:

#include "DSP281x_Device.h"

#include <stdio.h>

void Delay_1ms(long);

void main(void)

{

EALLOW;

SysCtrlRegs.WDCR = 0x0068;

SysCtrlRegs.SCSR = 0;

SysCtrlRegs.PLLCR.bit.DIV = 10;

SysCtrlRegs.HISPCP.all = 0x1;

SysCtrlRegs.LOSPCP.all = 0x2;

GpioMuxRegs.GPAMUX.all = 0x0;

GpioMuxRegs.GPBMUX.all = 0x0;

GpioMuxRegs.GPADIR.all = 0x0;

GpioMuxRegs.GPBDIR.all = 0x00FF;

DSP based electrical lab

P a g e | 68

Department of Electrical & Electronics Engineering, GRIET-HYD.

EDIS;

while(1)

{

GpioDataRegs.GPBDAT.all = 0xFF;

Delay_1ms(1000);

GpioDataRegs.GPBDAT.all = 0x0;

Delay_1ms(1000);

 }

}

void Delay_1ms(long end)

{

 long i;

 for (i = 0; i <(9000 * end); i++);

}

//==

// No more.

//==

DSP based electrical lab

P a g e | 69

Department of Electrical & Electronics Engineering, GRIET-HYD.

Result:

Watch variables

GpioDataRegs.GPADAT.all

GpioDataRegs.GPBDAT.all

Observe the LED flashes with the delay of 1000 ms.

DSP based electrical lab

P a g e | 70

Department of Electrical & Electronics Engineering, GRIET-HYD.

Program No 16: Generation of SVPWM pulses for an Inverter operation

Date:

Objective:

To run a program that can generates the SVPWM pulses to gating the Inverter switches.

Equipment required:

 Hardware:

• Laptop

• TMS320F28027 Launchpad

• XDS100v2 USB cable

• CRO

Software:
• Code Composer Studio 6.0

• MATLAB/Simulink

• C2000 processor supporting package

• Windows 8 OS.

Program:

*The following program has been generated through MATLAB/Simulink

interfacing for the F28027-Launchpad using support package for C2000

processor.

#include "SVPWM_Pulses.h"

#include "rtwtypes.h"

#include "rt_nonfinite.h"

#include "SVPWM_Pulses_private.h"

#include "c2000_main.h"

#include "F2802x_Device.h"

#include "f2802x_examples.h"

DSP based electrical lab

P a g e | 71

Department of Electrical & Electronics Engineering, GRIET-HYD.

#include <stdlib.h>

#include <stdio.h>

void init_board(void);

void enable_interrupts(void);

extern Uint16 RamfuncsLoadEnd;

void config_schedulerTimer(void);

void disable_interrupts(void);

volatile int IsrOverrun = 0;

static boolean_T OverrunFlag = 0;

void rt_OneStep(void)

{

 if (OverrunFlag++) {

 IsrOverrun = 1;

 OverrunFlag--;

 return;

 }

 asm(" SETC INTM");

 PieCtrlRegs.PIEIER1.all |= (1 << 6);

 asm(" CLRC INTM");

 SVPWM_Pulses_step();

 /* Get model outputs here */

 asm(" SETC INTM");

 PieCtrlRegs.PIEIER1.all &= ~(1 << 6);

 asm(" RPT #5 || NOP");

 IFR &= 0xFFFE;

 PieCtrlRegs.PIEACK.all = 0x1;

 asm(" CLRC INTM");

 OverrunFlag--;

}

DSP based electrical lab

P a g e | 72

Department of Electrical & Electronics Engineering, GRIET-HYD.

void main(void)

{

 volatile boolean_T noErr;

 // Copy InitFlash function code and Flash setup code to RAM

memcpy(&RamfuncsRunStart,&RamfuncsLoadStart,(Uint32)(&RamfuncsLoadEnd-

 &RamfuncsLoadStart));

 // Call Flash Initialization to setup flash waitstates

 // This function must reside in RAM

 InitFlash();

 init_board();

 rtmSetErrorStatus(SVPWM_Pulses_M, 0);

 SVPWM_Pulses_initialize();

 config_schedulerTimer();

 noErr =

 rtmGetErrorStatus(SVPWM_Pulses_M) == (NULL);

 enable_interrupts();

 while (noErr) {

 noErr =

 rtmGetErrorStatus(SVPWM_Pulses_M) == (NULL);

 }

 SVPWM_Pulses_terminate();

 disable_interrupts();

}

//==

// No more.

//==

DSP based electrical lab

P a g e | 73

Department of Electrical & Electronics Engineering, GRIET-HYD.

Result:

Watch variables

GpioDataRegs.GPADAT.all

GpioDataRegs.GPBDAT.all

We can observe the SVPWM waveforms by connecting GPIO pins to the CRO

Graph:

